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In the context of the two-dimensional (2D) polarization states of light, the degree of polarization P2 is equal to the
maximum value of the degree of coherence over all possible bases. Therefore, P2 can be referred to as the intrin-
sic degree of coherence of a 2D state. In addition to (i) the maximum degree of coherence interpretation, P2 also
has the following interpretations: (ii) it is the Frobenius distance between the state and the maximally incoherent
identity state, (iii) it is the norm of the Bloch vector representing the state, (iv) it is the distance to the center of mass
in a configuration of point masses with magnitudes equal to the eigenvalues of the state, (v) it is the visibility in a
polarization interference experiment, and (vi) it is the weightage of the pure part of the state. Among these six inter-
pretations of P2, the Bloch vector norm, Frobenius distance, and center-of-mass interpretations have previously
been generalized to derive an analogous basis-independent measure PN for N-dimensional (ND) states. In this
paper, by extending the concepts of visibility, degree of coherence, and weightage of the pure part to ND spaces,
we show that these three remaining interpretations of P2 also generalize to the same quantity PN , establishing PN

as the intrinsic degree of coherence of ND states. We then extend PN to the N → ∞ limit to quantify the intrinsic
degree of coherence P∞ of infinite-dimensional states in the orbital angular momentum, photon number, and
position-momentum degrees of freedom. ©2019Optical Society of America

https://doi.org/10.1364/JOSAB.36.002765

1. INTRODUCTION

Coherence is the physical property responsible for interference
phenomena observed in nature and is the subject matter of the
classical and quantum theories of coherence [1–7]. Both these
highly successful theories quantify coherence in terms of the
visibility or contrast of the interference. The key difference
is that whereas the classical theory formulates the visibility in
terms of correlation functions involving products of field ampli-
tudes [2–4], the quantum theory of optical coherence employs
correlation functions involving products of field operators
that in general may not commute [5–7]. In comparison to the
classical theory that fails to explain the higher-order correlations
of certain quantum light fields [8,9], the quantum theory can
be used to quantify the correlations of a general light field to
arbitrary orders. However, as far as effects arising from second-
order correlations of light fields are concerned, the classical and
quantum theories have identical predictions implying that both
can be interchangeably used.

For quantifying second-order correlations, the quantity of
central interest is the degree of coherence, which is just the suit-
ably normalized second-order correlation function involving

electromagnetic fields at two distinct spacetime points or polari-
zation directions [2,3]. In the context of a partially polarized
field represented by a 2× 2 polarization matrix ρ, the degree
of coherence is the magnitude of the suitably normalized off-
diagonal entry that quantifies the correlations between the field
components along a specific pair of orthogonal polarizations.
Thus, the degree of coherence is a manifestly basis-dependent
measure of coherence. In contrast, the maximum degree of
coherence over all possible orthonormal polarization bases is a
basis-independent measure of coherence known as the degree
of polarization [4]. Owing to this basis-independent maxi-
mum degree of coherence interpretation, in this paper we also
refer to the degree of polarization P2 as the “intrinsic degree of
coherence” of the field. For the polarization matrix ρ, which is
normalized, P2 is given by

P2 =
√

2 Tr (ρ2)− 1. (1)

In addition to (i) the maximum degree of coherence interpre-
tation, P2 also has the following interpretations [2]: (ii) it is
the norm of the Bloch vector representing the state, (iii) it is
the Frobenius distance between the state and the completely
incoherent state [10], (iv) it is the distance to the center of mass
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in a configuration of point masses of magnitudes equal to the
eigenvalues of the state [11], (v) it is the visibility obtained in a
polarization interference experiment, and (vi) it is the weightage
of the completely polarized part of the state. These six inter-
pretations together provide a mathematically appealing and
physically intuitive quantification of the intrinsic polarization
correlations of a field in a basis-independent manner.

While the need for a basis-independent quantification of
coherence has been recognized long ago in both classical and
quantum theories of optical coherence, such a quantification
has fully been achieved only for the two-dimensional (2D)
polarization states of light. In this context, it is known that the
2× 2 polarization matrix describing the polarization state of
a classical light field is formally identical to the 2× 2 density
matrix describing a quantum two-level system. Moreover, there
is a one-to-one correspondence between the Poincare sphere
representation of partially polarized fields in terms of Stokes
parameters [12] and the Bloch sphere representation of qubits in
terms of the Bloch vector components [13]. By this correspond-
ence, the measure P2 encodes essentially the same information
as the quantum purity, and can therefore be used to quantify
the intrinsic coherence of both classical and quantum 2D states
[14]. However, a generalized coherence measure analogous to
P2 that retains all its interpretations has not been obtained for
higher-dimensional states so far.

For quantifying the coherence of higher-dimensional sys-
tems, a number of studies in recent years have taken a resource
theoretic approach [15–20]. However, the present paper does
not follow this resource theoretic approach. Instead, it follows
an approach from optical coherence theory, which seeks to
generalize the basis-independent measure of coherence P2 and
all its known interpretations to quantify the intrinsic degree of
coherence of higher-dimensional classical and quantum states.

The first efforts in generalizing P2 to higher dimensions were
carried out by Barakat [21,22] and Samson and Olson [23,24].
In these efforts, they derived a basis-independent measure PN

for an N × N polarization matrix ρ by generalizing the Bloch
vector norm interpretation of P2 to an N-dimensional (ND)
space. In particular, they showed that for a normalizedρ,

PN =

√
NTr(ρ2)− 1

N − 1
. (2)

Recently, following up on previous generalizations for 3D [25]
and 4D [26] spaces, the Frobenius distance interpretation of
P2 [10] was generalized to ND spaces to also yield PN [27]. In
addition, the center-of mass-interpretation when applied to
ND states yields PN as the generalized measure. Thus, it has so
far been possible to show that PN has three of the six interpreta-
tions of P2. However, the generalization of the remaining three
interpretations has either not been attempted or has had limited
success [14,28,29]. In this paper, we take up the other three
interpretations of P2, namely, the visibility, degree of coherence,
and weightage of the pure part interpretations and extend them
to ND spaces. We show that even these three interpretations of
P2 generalize to the same measure PN . In essence, by demon-
strating that PN has all six interpretations of P2, we theoretically
establish PN as quantifying the intrinsic degree of coherence of
ND states. We then extend PN to the N→∞ limit to quantify

the intrinsic degree of coherence P∞ of infinite-dimensional
states.

The paper is organized as follows. In Section 2, we present
a conceptual description of the degree of polarization. In
Section 3, we describe the existing work on how the expres-
sion for PN is obtained by generalizing the Bloch vector norm,
Frobenius distance, and center-of-mass interpretations of P2

to ND states. In Section 4, we generalize the concepts of vis-
ibility, degree of coherence, and weightage of the pure part to
ND spaces, demonstrate that each of these interpretations of
P2 uniquely generalizes to PN , and thereby establish PN as the
intrinsic degree of coherence of finite ND classical and quantum
states. In Section 5, we consider infinite-dimensional states in
the orbital angular momentum (OAM), photon number, and
position and momentum bases, and show that the intrinsic
degree of coherence P∞ of a normalizable state ρ is given by
P∞ =

√
Tr(ρ2). In the rest of the paper, we will use the symbol

ρ to denote the density matrix of dimensionality 2, N, or∞
depending on the context. Also, we will denote the N × N
identity matrix by1N .

2. DEGREE OF POLARIZATION

The polarization state of an electromagnetic field can be repre-
sented by a positive-semidefinite 2× 2 Hermitian matrix. It is
referred to as the polarization matrix or the coherence matrix
and is defined as [1]

ρ =

[
〈E1 E ∗1 〉 〈E1 E ∗2 〉
〈E ∗1 E2〉 〈E2 E ∗2 〉

]
=

[
ρ11 ρ12

ρ21 ρ22

]
. (3)

Here, 〈· · · 〉 denotes the ensemble average over many real-
izations of the field, and E1 and E2 denote the electric field
components along two mutually orthonormal polariza-
tion directions represented by the basis vectors {|1〉, |2〉},
and ρi j with i, j = 1, 2 denoting the matrix elements
of ρ in the {|1〉, |2〉} basis. The basis-dependent quantity
µ2 = |ρ12|/

√
ρ11ρ22 is called the degree of coherence between

the polarization basis vectors {|1〉 and |2〉}. It was shown by Wolf
in a classic paper that the maximum value ofµ2 over all possible
choices of the bases in the 2D Hilbert space is equal to the degree
of polarization P2 [4], which for a normalized ρ, can be shown
to be [2]

P2 =
√

1− 4detρ =
√

2 Tr (ρ2)− 1. (4)

As the trace and the determinant are invariant under unitary
operations, P2 is a basis-independent quantity. Furthermore,
0≤ P2 ≤ 1 with P2 = 1 only when ρ is a perfectly polarized
field (pure state) and P2 = 0 only when ρ is the completely
unpolarized field (completely mixed state) represented by the
identity matrix. In the next two sections, we consider the six
known interpretations of P2 that justify its suitability as an
intrinsic degree of coherence for 2D states. Following a brief
description of each interpretation, we present the generalization
to ND space and obtain PN as the ND analog of P2.
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3. EXISTING WORKS ON GENERALIZING
INTERPRETATIONS OF P2 TO ND STATES

A. Bloch Vector Norm Interpretation

1. 2DStates

It is known that an arbitrary 2D stateρ has the following unique
decomposition in terms of the Stokes parameters [30]:

ρ =
1

2

(
12 +

3∑
i=1

r iσi

)
. (5)

Here, σ1, σ2, and σ3 are the Pauli matrices, and the real scalar
quantities r i ’s are called the Stokes parameters of the state. Such
a parametrization is possible due to the fact that σi ’s, which
are the generators of the Lie group SU(2), form an orthonor-
mal basis in the real vector space of traceless 2× 2 Hermitian
matrices with respect to the Hilbert–Schmidt inner product,
(A, B)≡Tr(A† B). Consequently, the parameters r i can be
regarded as the components of a 3D vector r ≡ (r1, r2, r3),
which is referred to as the Bloch vector representing the state
in this vector space. For a 2D density matrix ρ, the condition
Trρ2
≤ 1 is both necessary and sufficient to ensure positive-

semidefiniteness, which in turn implies that the space of
physical states is characterized by 0≤ |r| ≤ 1. This space
can be imagined to be a closed sphere in three dimensions,
termed as the Bloch sphere. The pure states reside on the surface
of this sphere with |r| = 1, whereas the maximally incoherent
state12/2 with |r| = 0 resides at the center. From Eq. (4), it can
be shown that the norm of the Bloch vector is equal to P2, i.e.,

|r| =
√∑3

i=1 |r i |
2 = P2 [30]. This way, P2 is interpreted as the

norm of the Bloch vector representing the state.

2. NDStates

In direct correspondence with Eq. (5), it has been shown that
any ND stateρ can be decomposed as [31–34]

ρ =
1

N

1N +

√
N(N − 1)

2

(N2
−1)∑

i=1

r i3i

 , (6)

where3i ’s are the generalized N × N Gellmann matrices, and
the scalar quantities r i ’s are the ND analogs of Stokes param-
eters. In exact analogy with the 2D case, this parametrization
is made possible by the fact that 3i ’s, which are the (N2

− 1)
generators of the Lie group SU(N), form an orthonormal
basis in the real vector space of traceless N × N Hermitian
matrices with respect to the Hilbert–Schmidt inner product.
The parameters r i form the components of the (N2

− 1)-
dimensional Bloch vector r representing the state ρ. We note
that in contrast to the 2D case, the condition Trρ2

≤ 1 is not
sufficient to ensure positive-semidefiniteness of ND density
matrices. Consequently, only a subset of states represented by
the (N2

− 1)-dimensional sphere and defined by 0≤ |r| ≤ 1
corresponds to physical states [32,33].

Barakat [21,22] and Samson and Olson [23,24] were the first
ones to show that the norm of the ND Bloch vector is the degree
of polarization PN of the state. The derivations of PN by both
Barakat [21,22] and Samson and Olson [23,24] were presented

in terms of the eigenvalues of ρ and not in terms of the Gellman
matrices. For 3D states, an explicit derivation of P3 in terms of
3D Gellman matrices was carried out by Setälä et al. [35,36]
who also demonstrated usefulness of P3 for studying optical
near fields and evanescent fields. We now present the derivation
for ND states explicitly in term of ND Gellman matrices and
obtain the expression of PN as in Eq. (2).

We note that the set of (N2
− 1) generalized Gellmann

matrices 3i ’s of Eq. (6) comprises three subsets: the set {U} of
N(N − 1)/2 symmetric matrices, the set {V } of N(N − 1)/2
anti-symmetric matrices, and the set {W} of (N − 1) diagonal
matrices. The explicit forms of these matrices in the orthonor-
mal basis {|i〉}Ni=1, where |i〉 is an ND column vector with the i th

entry being 1 and others being 0, are given by [32]

U j k = | j 〉〈k| + |k〉〈 j |, V j k =−i | j 〉〈k| + i |k〉〈 j |,

and Wl =

√
2

l(l + 1)

(
l∑

m=1

|m〉〈m| − l |l + 1〉〈l + 1|

)
,

(7)

where 1≤ j < k ≤ N and 1≤ l ≤ (N − 1). In terms of these
definitions, we write Eq. (6) as

ρ =
1

N

[
1N +

√
N(N − 1)

2

×

 N∑
j=1

N∑
k= j+1

{u j kU j k + v j k V j k} +

N−1∑
l=1

wl Wl

 , (8)

where u j k, v j k , and wl are the Bloch vector components along
the Gellmann matrices U j k, V j k , and Wl , respectively. Here, we
have relabeled the set of components {r i } and the set of matrices
{3i } of Eq. (6) by the set of parameters {{u j k}, {v j k}, {wl }} and
the set of matrices {{U j k}, {V j k}, {Wl }}, respectively. We cal-
culate the components u j k, v j k , and wl in terms of the density
matrix elements and find them to be

uj k =

√
N

2(N − 1)
(ρj k+ρk j ), vj k = i

√
N

2(N − 1)
(ρj k−ρk j),

wl =

√
N

l(l + 1)(N − 1)

(
l∑

m=1

ρmm − lρl+1,l+1

)
. (9)

The norm of the Bloch vector r defined as |r| =
√∑(N2−1)

i=1 r 2
i is

therefore given by

|r| =

√√√√ N∑
j=1

N∑
k= j+1

[u2
j k + v

2
j k] +

N−1∑
l=1

w2
l . (10)

In order to evaluate |r|, we first find that

N∑
j=1

N∑
k= j+1

[u2
j k + v

2
j k] =

2N
N − 1

N∑
j=1

N∑
k= j+1

|ρ j k |
2. (11)

We then evaluate the other summation in Eq. (10) to be
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N−1∑
l=1

w2
l =

N−1∑
l=1

N
l(l + 1)(N − 1)

(
l∑

m=1

ρmm − lρl+1,l+1

)2

=
N

N − 1

 N∑
i=1

ρ2
i i


N−1∑
j=i

1

j ( j + 1)
+

i − 1

i


−

2

N

N∑
i=1

N∑
j=i+1

ρi iρ j j



=

N∑
i=1

ρ2
i i −

2

N − 1

N∑
i=1

N∑
j=i+1

ρi iρ j j . (12)

By substituting Eqs. (11) and (12) into Eq. (10), we obtain

|r| = PN =

√
NTr(ρ2)− 1

N − 1
= PN . (13)

Thus PN , like its 2D analog, can be interpreted as the norm of
the Bloch vector corresponding to the ND state.

B. Frobenius Distance Interpretation

1. 2DStates

For a 2D state ρ, it was known that the degree of polarization P2

can be viewed as the Frobenius distance between the state ρ and
the completely incoherent state12/2 [10], i.e.,

P2 =
√

2

∥∥∥∥ρ − 12

2

∥∥∥∥
F
=

√
2 Tr (ρ2)− 1. (14)

Here, the Frobenius distance is quantified using the Frobenius
norm, defined as ‖A‖F ≡

√
Tr(A† A), with the normalization

factor ensuring that 0≤ P2 ≤ 1. We see that the expressions of
P2 in Eqs. (4) and (14) are the same.

2. NDStates

The Frobenius distance interpretation was first generalized to
3D [25] and 4D [26] states by Luis. More recently, Yao et al. [27]
have generalized the Frobenius distance interpretation to ND
states to define PN as

PN ≡

√
N

N − 1

∥∥∥∥ρ − 1N

N

∥∥∥∥
F
= PN =

√
NTr(ρ2)− 1

N − 1
. (15)

In other words, PN is the Frobenius distance between the state
ρ and the completely incoherent state 1N/N in the space of
N × N density matrices. The normalization factor in Eq. (15)
is again chosen such that 0 6 PN 6 1. We note that the expres-
sions of PN in Eqs. (2) and (15) are the same. Furthermore,
it can be verified that when ρ is pure, Tr(ρ2)= 1, implying
PN = 1, whereas when ρ = 1N/N, Tr(ρ2)= 1/N, implying
PN = 0.

C. Center-of-Mass Interpretation

In a recent study, Alonso et al. [11] have discussed a geometric
interpretation of the measure PN of Eq. (2) as the distance to the
center of mass in a configuration of point masses.

1. 2DStates

Consider a configuration of two point masses of magnitudes
equal to the eigenvalues λ1 and λ2 of the state, each placed at
a unit distance from the origin in opposite directions in a 1D
Euclidean space. The distance Q to the center of mass of this
configuration from the origin is given by

Q =

∣∣∣∣λ1 − λ2

λ1 + λ2

∣∣∣∣= P2. (16)

Thus, P2 has the interpretation as the distance of the center of
mass from the origin in this configuration.

2. NDStates

Consider a configuration of N point masses of magnitudes
equal to the eigenvalues λ1, λ2, . . . , λN of ρ, each placed at
a unit distance from the origin and equally spaced from one
another such that they constitute a regular (N − 1)-simplex in
an (N − 1)-dimensional Euclidean space. The distance Q to
the center of mass of this configuration is given by

Q =

√√√√√√
∑N−1

i=1

∑N
j=i+1 (λi − λ j )

2

(N − 1)

(
N∑

i=1
λi

)2 = PN . (17)

Therefore, PN is equal to the distance of the center of mass of
this configuration from the origin.

4. GENERALIZING OTHER INTERPRETATIONS
OF P2 TO ND STATES

A. Maximum Degree of Coherence Interpretation

1. 2DStates

As pointed out in Section 2 in the context of 2D polarization
sates, the basis-dependent quantity µ2 in Eq. (3) quantifies the
degree of coherence between the mutually orthogonal polari-
zation states represented by |1〉 and |2〉. Using Eqs. (4) and
(19), it can be shown that 0≤µ2 ≤ P2 and also that µ2 attains
the maximum value P2 when the basis {|1〉, |2〉} is such that
ρ11 = ρ22 [2,4], i.e.,

max
{|1〉,|2〉}∈S

µ2 = P2. (18)

In this way, P2 is interpreted as the maximum of µ2 over the
set S of all orthonormal bases in the 2D Hilbert space. In order
to generalize the definition of the degree of coherence for ND
states, we rewriteµ2 as

µ2 =

√
|ρ12|

2

ρ11ρ22
. (19)
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We find that while the numerator |ρ12|
2 quantifies the corre-

lation between the basis vectors |1〉 and |2〉, the denominator
provides the normalization such that 0≤µ2 ≤ 1. Our aim is to
define an ND degree of coherenceµN such that it reduces toµ2

for N = 2 and lies between 0 and 1.

2. NDStates

We use the definition in Eq. (19) to generalize the concept of
the degree of coherence to ND states. We expect the generalized
quantity µN to be basis dependent, the maximum of which
must be equal to the ND intrinsic degree of coherence PN .
Therefore, in analogy with the definition of µ2 in Eq. (19), we
define the ND degree of coherenceµN as

µN =

√√√√√√√√
N−1∑
i=1

N∑
j=i+1
|ρi j |

2

N−1∑
i=1

N∑
j=i+1

ρi iρ j j

. (20)

Here, ρi j are the matrix elements of the state ρ in an orthonor-
mal basis {|1〉, |2〉, . . . , |N〉}. The numerator is the sum of
the squared magnitudes of all the off-diagonal terms, and the
denominator is the sum of the products of the pairs of diago-
nal terms. As expected, µN as defined above reduces to µ2 for
N = 2, and the normalization term in the denominator makes
sure that µN lies between 0 and 1. We further note that µN is a
basis-dependent quantity. Now, in order for µN to be consid-
ered as the ND analog ofµ2, we need to show that the maximum
value ofµN over the set of all possible ND bases is equal to PN .
From Eqs. (15) and (20), we have

µ2
N =

N−1∑
i=1

N∑
j=i+1
|ρi j |

2

N−1∑
i=1

N∑
j=i+1

ρi iρ j j

=

1
2

(
N∑

i=1

N∑
j=1
|ρi j |

2
−

N∑
i=1
ρ2

i i

)
1
2

(
N∑

i=1

N∑
j=1
ρi iρ j j −

N∑
i=1
ρ2

i i

)

=

Tr(ρ2)−
N∑

i=1
ρ2

i i

1−
N∑

i=1
ρ2

i i

= 1−
1−Tr(ρ2)

1−
N∑

i=1
ρ2

i i

. (21)

From the above equation, it is clear that µ2
N attains its mini-

mum value when the sum
∑N

i=1 ρ
2
i i is maximum. The sum is

maximum when ρi i is equal to 1 only for a particular i and is
zero for the rest, in which case the sum

∑N
i=1 ρ

2
i i =Tr(ρ2),

implying minµN = 0. Furthermore, µ2
N attains its maxi-

mum value when the sum
∑N

i=1 ρ
2
i i is minimum. It is

straightforward to show that the sum
∑N

i=1 ρ
2
i i is mini-

mum when ρ11 = ρ22 = · · · = ρNN = 1/N, in which case∑N
i=1 ρ

2
i i =

∑N
i=1 (1/N)2 = 1/N. Therefore, from Eq. (21),

we have

max
{|1〉,|2〉,...|N〉}∈S

µN =

√
N Tr(ρ2)− 1

N − 1
= PN, (22)

which is in direct correspondence with Eq. (18). Thus, as in
the 2D case, we find that the maximum of µN over the set S of
all orthonormal bases in the ND Hilbert space is equal to the
intrinsic degree of coherence PN . Moreover, the maximum is
achieved in the basis where all the diagonal entries are equal,
again as is true in the 2D case. While our analysis does not
present a clear physical reasoning for defining µN as Eq. (20),
the fact that µN satisfies all the mathematical properties of
µ2 strongly suggests that µN is the ND analog of µ2, and can
therefore be referred to as the ND degree of coherence.

We now note that our above analysis is physically distinct
from a recent study [19] that relates the maximal resource
theoretic coherence of a state over unitary transformations to
the state purity. The distinction arises because whereas optical
coherence theory quantifies the system’s ability to interfere,
the resource theory of coherence quantifies the amount of
superposition in a specific basis that can be exploited for cer-
tain quantum protocols. In order to illustrate this difference
in the context of a 2D state ρ, we consider the l1-norm meas-
ure |ρ12| from resource theory, and the degree of coherence
µ2 = |ρ12|/

√
ρ11ρ22 of Eq. (19) from optical coherence theory.

For a pure state ρ = |ψ〉〈ψ |, where |ψ〉 = ε|1〉 +
√

1− ε2|2〉
with ε→ 0, we have |ρ12|→ 0, which implies that the state is
incoherent in a resource theoretic sense, whereasµ2 = 1, which
implies that the state is fully coherent in the optical coherence
theoretic sense. Therefore, while it is interesting that similar
relations between maximal coherence and purity hold in both
theories, these relations are physically distinct.

B. Visibility Interpretation

1. 2DStates

The visibility interpretation of P2 for a 2D state was given
by Wolf [4] using a polarization interference scheme (see
Section 6.2 of Ref. [1]). As depicted in Fig. 1, we discuss this
scheme with slight modifications in order to make it more
amenable to generalization to higher dimensions. A field in the
polarization state ρ, as given by Eq. (3), first passes through
a wave plate (WP) that introduces a phase δ between the two
mutually orthogonal directions represented by vectors |1〉 and
|2〉. The field then passes through a rotation plate (RP) that
rotates the polarization state by an angle θ . Finally, the field is
detected using the polarizing beam splitter (PBS) in the two
orthogonal polarization directions |1〉 and |2〉. The correspond-
ing detection probabilities I1 and I2 at the two output ports are
given by

(a) (b)

Fig. 1. (a) Schematic setup for describing degree of polarization P2

as the visibility in a polarization interference experiment. (b) Schematic
setup for describing N-dimensional degree of polarization or N-
dimensional intrinsic degree of coherence PN as the N-dimensional
visibility in an interference experiment. PBS, polarizing beam splitter;
NPS, N-port splitter.
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I1 = ρ11 cos2 θ + ρ22 sin2 θ + |ρ12| sin θ cos θ cos(β + δ),

I2 = ρ11 sin2 θ + ρ22 cos2 θ − |ρ12| sin θ cos θ cos(β + δ),

where ρ12 = |ρ12|e iβ . The visibility V of the interference
pattern is defined as (see Section 6.2 of Ref. [1])

V =
〈I1〉max(δ,θ) − 〈I1〉min(δ,θ)

〈I1〉max(δ,θ) + 〈I1〉min(δ,θ)
, (23)

where 〈I1〉max(δ,θ) and 〈I1〉min(δ,θ) are the maximum and
minimum values of I1, respectively, over all possible δ and θ .
Similarly, we can equivalently define the visibility as

V = max
U∈U(2)

∣∣∣∣ I1 − I2

I1 + I2

∣∣∣∣= max
U∈U(2)

f (I1, I2), (24)

where U(2) is the group of 2D unitary matrices, and where we
have denoted |(I1 − I2)/(I1 + I2)| as f (I1, I2) since we would
find this notation to be more convenient when generalizing to
ND spaces. The function f (I1, I2)has the following properties:
(i) it is 1 if and only if one among I1 and I2 is 1 and the other one
is 0; (ii) it is 0 if and only if I1 = I2; (iii) it is a Schur-convex func-
tion, i.e., for two given sets of probabilities {I1, I2} and {I ′1, I ′2},
if {I ′1, I ′2} majorizes {I1, I2}, then f (I1, I2)≤ f (I ′1, I ′2) [37].
The maximization involved in Eq. (24) can be carried out using
Schur’s theorem, which states that the measured probability
distribution of a state in any basis is majorized by the eigenvalue
distribution of the state [38], i.e., (I1, I2)≺ (λ1, λ2). Since
there always exists a unitary transformation such that I1 = λ1

and I2 = λ2, f (I1, I2) becomes maximum when I1 = λ1 and
I2 = λ2, and in that case, we get

V = max
U∈U(2)

f (I1, I2)= f (λ1, λ2)=

∣∣∣∣λ1 − λ2

λ1 + λ2

∣∣∣∣= P2, (25)

i.e., P2 equals the 2D visibility in a polarization interference
experiment. The importance of the visibility interpretation is
that it provides not only a physically intuitive way of under-
standing the degree of coherence but also an experimental
scheme for measuring it.

2. NDStates

In direct analogy with the scheme depicted in Fig. 1(a),
Fig. 1(b) depicts the general interference situation for an
ND density matrix ρ represented in an orthonormal basis
{|1〉, |2〉, . . . , |N〉}. The density matrix ρ is acted upon by
a general N × N unitary operator U , which can be realized
by a combination of optical elements. The N-port splitter
(NPS) divides the density matrix along N orthonormal states
{|1〉, |2〉, . . . , |N〉}, and the detection probabilities along the
basis vectors are represented by {I1, I2, . . . , IN}. In analogy
with the definition of f (I1, I2) for the 2D case, we define

f (I1, I2, . . . , IN)=

√√√√√√√√
N−1∑
i=1

N∑
j=i+1

(Ii − I j )
2

(N − 1)

(
N∑

i=1
Ii

)2 , (26)

which satisfies the following properties: (i) it is 1 if and
only if Ii = 1 for some i = k, and Ii = 0 for i 6= k, where
i = 1, 2, . . . , N and k ≤ N; (ii) it is 0 if and only if all the prob-
abilities are equal, i.e., Ii = 1/N, where i = 1, 2, . . . , N; (iii) it
is a Schur-convex function, as may be proved using theorem
II.3.14 of Ref. [37]. We know by virtue of Schur’s theorem
[38] that {I1, I2, . . . , IN} ≺ {λ1, λ2, . . . , λN}, where λi s are
eigenvalues of the density matrix. We also know that there
always exists a unitary transformation U ∈U(N), such that
{I1, I2, . . . , IN} = {λ1, λ2, . . . , λN}. Using these facts, we
define the ND visibility V as f (I1, I2 . . . , IN)maximized over
U(N), i.e.,

V = max
U∈U(N)

f (I1, I2 . . . , IN)=

√√√√√√√√
N−1∑
i=1

N∑
j=i+1

(λi − λ j )
2

(N − 1)

(
N∑

i=1
λi

)2

=

√
N Tr(ρ2)− 1

N − 1
= PN . (27)

Thus, we find that just as in the 2D case, PN has the interpreta-
tion as the ND visibility of an experiment.

C. Weightage of Pure Part Interpretation

1. 2DStates

In the context of partially polarized fields, it has been shown that
any 2D polarization state ρ can be uniquely decomposed into a
weighted mixture of two fields, one of which is completely polar-
ized or pure, and the other one completely unpolarized or fully
mixed [1,2]. Mathematically, this implies that

ρ = s 1|ψ1〉〈ψ1| + (1− s 1)
12

2
, (28)

where |ψ1〉 represents the completely polarized pure state,
s 1 = λ1 − λ2 with λ1 and λ2 being the eigenvalues of ρ denotes
the weightage of the pure part, and 12 is the completely unpo-
larized state. From Eq. (25), we know that for a normalized ρ,
λ1 − λ2 = P2, from which we get

s 1 = λ1 − λ2 = P2. (29)

In other words, P2 is equal to the weightage of the pure por-
tion of the state. This interpretation is physically intuitive as it
implies that in order to prepare the state by mixing together a
pure state and the completely mixed state, the needed weightage
of the pure part is P2.

2. NDStates

We now generalize this interpretation of P2 to higher dimen-
sions. The quantification of P2 in terms of the weightage of its
pure part is possible only because of the existence of the unique
decomposition in Eq. (28). However, it is now known that such
a unique decomposition in terms of just two matrices is not
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possible for ND states [39–41]. For a 3D polarization state, it
has been shown that a unique decomposition is possible in terms
of three matrices, one of which is the rank-1 matrix, which is a
pure state, the second one is a rank-2 matrix, and the third one is
the identity matrix [28]. It has been argued that the weightage of
the pure part of this decomposition, which is equal to λ1 − λ2,
where λ1 and λ2 are the two largest eigenvalues of ρ, could be
taken as the degree of polarization of the 3D state. However, a
few issues have been pointed out regarding this decomposition
because of which the weightage of the rank-1 matrix of this
decomposition cannot in general be taken as the 3D degree of
polarization [14,29].

In contrast, we now show that it is possible to have a unique
decomposition of an ND state as a weighted mixture of N matri-
ces as given below, one of which is completely mixed and the rest
N − 1 are completely pure:

ρ =

N−1∑
i=1

s i |ψi 〉〈ψi | +

(
1−

N−1∑
i=1

s i

)
1N

N
. (30)

Here, the states {|ψi 〉}’s are pure and orthonormal, and the
corresponding weightages s i ’s are real and non-negative.
In order to ensure a unique decomposition for every physi-
cal density matrix, it must be verified that the number of
independent parameters are identical on the two sides of
Eq. (30). On the left side, the density matrix ρ has (N2

− 1)
free parameters. On the right side, (i) there are (N − 1)s i ’s,
(ii) each of the (N − 1)|ψi 〉’s has 2(N − 1) free parameters, and
(iii) the mutual orthogonality between |ψi 〉’s would introduce
(N − 1)(N − 2) constraints. These conditions imply (N2

− 1)
free parameters on the right-hand side as well. We introduce an
additional vector |ψN〉 to the set of (N − 1)|ψi 〉’s, such that
|ψi 〉with i = 1 . . . N form an orthonormal and complete basis,
i.e.,

∑N
i=1 |ψi 〉〈ψi | = 1N . Now, if Eq. (30) is written in this

|ψi 〉 basis, then the right-hand side is completely diagonal. This
implies that the representation of ρ on the left-hand side must
also be diagonal in this basis, i.e., |ψi 〉’s must necessarily be the
eigenvectors of ρ with ρ =

∑N
i=1 λi |ψi 〉〈ψi |. Here, we have

denoted the corresponding eigenvalues as λi and have assumed
λ1 ≥ λ2 ≥ · · · ≥ λN . Equation (30) therefore takes the form

ρ =

N−1∑
i=1

(λi − λN)|ψi 〉〈ψi | + (NλN)
1N

N
. (31)

As the weightages s i = (λi − λN) are non-negative, the above
decomposition is necessarily unique. We note that Eq. (27)
expresses PN in terms of the eigenvalues of ρ. Using this, and
after straightforward calculation, we obtain an expression for
PN solely in terms of the weightage of the pure parts given as

PN =

√√√√√√√√
N−1∑
i=1

N∑
j=i+1

(λi − λ j )
2

(N − 1)

(
N∑

i=1
λi

)2 =

√√√√√N
N−1∑
i=1

s 2
i −

(
N−1∑
i=1

s i

)2

N − 1

=

√√√√√(N−1∑
i=1

s i

)2

−
2N

N − 1

N−1∑
i=1

N−1∑
j=i+1

s i s j 6
N−1∑
i=1

s i . (32)

The above equation expresses the weightage of the pure part
interpretation of PN . Just as in the 2D case, we find that ρ can
be generated by mixing together a completely mixed state and
N − 1 pure states in a particular proportion. However, the dif-
ference is that whereas P2 = s 1 in the 2D case, for the ND case,
we find PN ≤

∑N−1
i=1 s i . In other words, the total weightage

of pure parts puts an upper bound on the intrinsic degree of
coherence. Moreover, the bound is tight as in any ND space, and
there exist states with only two non-zero eigenvalues. For such
states, the bound is saturated, i.e., PN =

∑N−1
i=1 s i .

5. QUANTIFYING THE INTRINSIC DEGREE OF
COHERENCE P∞ OF INFINITE-DIMENSIONAL
STATES

In this section, we extend PN to the N→∞ limit to quantify
the intrinsic degree of coherence P∞ of infinite-dimensional
states. The procedure is not quite as straightforward as com-
puting the N→∞ limit of Eq. (2) due to the following
reasons: first, from the expression for PN , we note that in
general, limN→∞ PN may not exist. This is because certain
infinite-dimensional states can be non-normalizable, in which
case Tr(ρ2) can diverge [42]. Second, owing to the fact that
N can take only integer values, even if limN→∞ PN exists,
the generalization implicitly assumes the existence of a dis-
crete or countable-infinite basis in the infinite-dimensional
vector space. While this assumption is manifestly valid
for the infinite-dimensional spaces spanned by the dis-
crete OAM and photon number bases, its validity is not
evident for the infinite-dimensional space spanned by the
uncountable-infinite or continuous variable position and
momentum bases. Here, we present rigorous derivation of P∞
for infinite-dimensional states. We show that for any normalized
infinite-dimensional state ρ in the OAM, photon number, and
position and momentum bases, the expression for P∞ is given
by P∞ =

√
Tr(ρ2).

A. Orbital Angular Momentum and Angle
Representations

We denote the OAM eigenstates as |l〉, where l =
−∞, . . . ,−1, 0, 1, . . . ,∞, and the angle eigenstates as
|θ〉, where θ ∈ [0, 2π). Owing to the Fourier relationship
between the OAM and angle observables [43], the eigenstates
are related as

|l〉 =
1
√

2π

∫ 2π

0
e+ilθ
|θ〉dθ, (33a)
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|θ〉 =
1
√

2π

+∞∑
l=−∞

e−ilθ
|l〉. (33b)

We note that in contrast to finite-dimensional vectors, infinite-
dimensional vectors may be non-normalizable. For instance,
it is evident from Eq. (33b) that the angle eigenstate |θ〉 is
non-normalizable.

We now consider a stateρ written in the OAM basis as

ρ =

+∞∑
l=−∞

+∞∑
l ′=−∞

c l l ′ |l〉〈l ′|. (34)

We rewrite the stateρ of Eq. (34) in the limiting form

ρ = lim
D→∞

+D∑
l=−D

+D∑
l ′=−D

c l l ′ |l〉〈l ′|. (35)

In essence, the above relation views the infinite-dimensional
state ρ as the D→∞ limit of a (2D+ 1)-dimensional state
residing in the finite state space spanned by the OAM eigenstates
|l〉 for l =−D, . . . ,−1, 0, 1, . . . , D, where D is an arbitrarily
large but finite integer. We now use Eq. (2) to compute P2D+1

and evaluate P∞ = limD→∞ P2D+1, which yields

P∞ = lim
D→∞

√√√√√ (2D+ 1)
+D∑

l=−D

+D∑
l ′=−D

|c l l ′ |
2 − 1

2D
. (36)

Now let us assume that ρ is normalized, i.e., Tr(ρ)=∑
+∞

l=−∞ c l l = 1. This implies that
∑
+∞

l=−∞

∑
+∞

l ′=−∞ |c l l ′ |
2
=

Tr(ρ2)≤ 1. Under this condition, Eq. (36) evaluates to

P∞ =

√√√√ +∞∑
l=−∞

+∞∑
l ′=−∞

|c l l ′ |
2 =

√
Tr(ρ2). (37)

The above equation can be used to evaluate P∞ of a normalized
state ρ. However, when ρ is non-normalizable, such as the angle
eigenstateρ = |θ〉〈θ | of Eq. (33b), the quantity Tr(ρ2)diverges.
In such cases, Eq. (37) cannot be used to compute P∞.

We now use the basis invariance of P∞ to derive its expression
in terms of the angle representation ofρ. Using Eq. (33a) to sub-
stitute for |l〉 and 〈l ′| into Eq. (34), it follows thatρ has the angle
representation

ρ =

∫ 2π

0

∫ 2π

0
W(θ, θ ′)|θ〉〈θ ′|dθdθ ′, (38)

where the continuous matrix elements W(θ, θ ′) are related to
the coefficients c l l ′ as

W(θ, θ ′)=
1

2π

+∞∑
l=−∞

+∞∑
l ′=−∞

c l l ′e+i(lθ−l ′θ ′). (39)

In the context of light fields, W(θ, θ ′) is the angular coherence
function, which quantifies the correlation between the field
amplitudes at angular positions θ and θ ′ [44,45]. Assuming
that ρ is normalized, we have Tr(ρ)=

∫ 2π
0 W(θ, θ)dθ = 1.

Substituting Eq. (38) into Eq. (37), we obtain

P∞ =
√

Tr(ρ2)=

√∫ 2π

0

∫ 2π

0
|W(θ, θ ′)|2dθdθ ′. (40)

Equations (37) and (40) can be used to compute P∞ of any nor-
malized infinite-dimensional state in the OAM and angle repre-
sentations.

B. Photon Number Representation

The photon number eigenstates |n〉, where n = 0, . . . ,∞, span
an orthonormal and complete basis in the infinite-dimensional
Fock space. It is known that like OAM and angle, the pho-
ton number and optical phase are conjugate observables.
However—owing to the fact that unlike the OAM eigenvalues,
the photon number eigenvalues can take only non-negative
integer values—the optical phase eigenstates in the infinite
state space are not orthonormal, and therefore do not constitute
a well-defined basis [46]. For our purposes, it is sufficient to
restrict our attention to the photon number basis and compute
P∞ in an identical manner as we did previously for states in the
OAM basis. We first consider a general state expressed in the
photon number basis as

ρ =

∞∑
n=0

∞∑
n′=0

ann′ |n〉〈n′|. (41)

We rewrite the above state in the limiting form

ρ = lim
D→∞

D∑
n=0

D∑
n′=0

ann′ |n〉〈n′|, (42)

where D is an arbitrarily large but finite positive integer.
We then compute P∞ of ρ by using Eq. (2) to compute
PD+1 of a (D+ 1)- dimensional state in the limit D→∞ as

P∞ = lim
D→∞

√√√√√ (D+ 1)
D∑

n=0

D∑
n′=0
|ann′ |

2 − 1

D
. (43)

We assume that Tr(ρ)=
∑
∞

n=0 ann = 1, which implies∑
∞

n=0

∑
∞

n′=0 |ann′ |
2
=Tr(ρ2)≤ 1. Under this condition,

Eq. (43) reduces to the form

P∞ =

√√√√ ∞∑
n=0

∞∑
n′=0

|ann′ |
2 =

√
Tr(ρ2). (44)

C. Position and Momentum Representations

We now consider infinite-dimensional states in the continuous-
variable position and momentum representations. For
conceptual clarity, we present our analysis for a 1D con-
figuration space, which is labeled by the co-ordinate x . The
corresponding canonical momentum space is labeled by the
co-ordinate p . A general stateρ in the position basis is written as

ρ =

∫
+∞

−∞

∫
+∞

−∞

G(x , x ′)|x 〉〈x ′|dxdx ′. (45)
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Similarly, in the momentum basis,ρ is given by

ρ =

∫
+∞

−∞

∫
+∞

−∞

0(p, p ′)|p〉〈p ′|dpdp ′. (46)

The continuous matrix elements G(x , x ′) and 0(p, p ′)
represent the cross-correlation functions in the position and
momentum representations, respectively.

We recall that the expressions (37) and (44) for P∞ of states
in the OAM and photon number bases were derived by viewing
the infinite-dimensional state as the infinite integer limit of a
finite-dimensional state. As the dimensionality was constrained
to take only integer values, the derivations implicitly depended
on the fact that the OAM and photon number bases are discrete,
and hence countable-infinite. However in the present case,
both the position and the momentum bases are continuous, i.e.,
uncountable-infinite. Nevertheless, we now show that this issue
can be circumvented by constructing a physically indistinguish-
able finite-dimensional state space for position and momentum
variables. Our construction extensively draws on techniques
developed previously by Pegg and Barnett for constructing
finite-dimensional state spaces for the OAM angle [43] and
photon number-optical phase [47,48] pairs of observables.

1. Construction of a Finite-Dimensional Space

We consider an arbitrarily large but finite region [−pmax, pmax]

in momentum space as depicted in Fig. 2. We sample (2D+ 1)
equally spaced momentum values p j in this region, where
j =−D, . . . , 0, . . . , D, with D also being arbitrarily
large but finite. The spacing between consecutive values is
1p = pmax/D, which is made arbitrarily close to zero. Using
the (2D+ 1) orthonormal eigenstates |p j 〉 corresponding
to the momentum eigenvalues p j = j1p , we develop a con-
sistent (2D+ 1)-dimensional state space for position and
momentum. We will compute P∞ for ρ by first computing
P2D+1 of a (2D+ 1)-dimensional state and then taking the
limit of D→∞ and pmax→∞, subject to the condition that
1/1p = D/pmax→∞.

To this end, we note that a momentum operator p̂ must be a
generator of translations in position space. Therefore, a position
state |x 〉must satisfy [42]

exp
(
−i p̂η/~

)
|x 〉 = |x + η〉. (47)

If we define |x0〉 as the state corresponding to the origin, then

|x 〉 = exp
(
−i p̂ x/~

)
|x0〉. (48)

Now, similarly, a position operator x̂ must be a generator of
translations in momentum space. This implies that

exp
(
+i pk x̂/~

)
|p j 〉 = |p j+k〉, (49)

Fig. 2. In the finite state space, the position eigenvectors |xm〉

for m =−D, ... , 0, ... D, and momentum eigenvectors |p j 〉 for
j =−D, ... , 0, ... , D span a finite (2D+ 1)-dimensional space.

where the translations are cyclic, such that exp(i p1 x̂/~)|pD〉 =

|p−D〉. We now use the orthonormal states |p j 〉 and Eqs. (47)
and (49) to derive the form of the corresponding position
eigenstates in the (2D+ 1)-dimensional state space.

Let us suppose that |x0〉 takes the general form

|x0〉 =

+D∑
j=−D

c j |p j 〉. (50)

Evaluating exp(+i pk x̂/~)|x0〉by using Eq. (49), we get

|x0〉 =

+D∑
j=−D

c j |p j+k〉. (51)

Now since the above equation is true for all k, the coefficients c j

are necessarily independent of j , and upon normalization, they
become c j = (1/

√
2D+ 1). Using Eq. (48), we then obtain

|x 〉 =
+D∑

j=−D

e−i p j x/~
√

2D+ 1
|p j 〉. (52)

The inner product 〈x |x ′〉 can therefore be written as

〈x |x ′〉 =
+D∑

j=−D

+D∑
k=−D

e+i(p j x−pk x ′)/~

(2D+ 1)
〈p j |pk〉

=
1

(2D+ 1)

sin
[
(2D+ 1)(x − x ′)1p/2~

]
sin [(x − x ′)1p/2~]

. (53)

This implies that 〈x |x ′〉 = 0 only when (x − x ′)=
2π~n/{(2D+ 1)1p}, where n is a non-zero integer. This
orthogonality condition allows us to select an orthonormal basis
comprising the basis vectors |xm〉 corresponding to the positions

xm =
2πm~

(2D+ 1)1p
(m =−D, . . . , 0, . . . , D). (54)

These (2D+ 1) positions are equally spaced from x−D to xD

with a spacing of 1x = 2π~/{(2D+ 1)1p}. We write the
orthonormality and completeness relations for the basis vectors
|xm〉 and |p j 〉 as

〈xm |xn〉 = δmn, 〈p j |pk〉 = δ j k, (55a)

+D∑
m=−D

|xm〉〈xm | = 1,
+D∑

j=−D

|p j 〉〈p j | = 1. (55b)

Using Eqs. (52) and (54), we find that the basis vectors are
related as

|xm〉 =
1

√
2D+ 1

+D∑
j=−D

e−i2πmj/(2D+1)
|p j 〉, (56a)

|p j 〉 =
1

√
2D+ 1

+D∑
m=−D

e+i2πmj/(2D+1)
|xm〉. (56b)
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Thus, we have derived a finite-dimensional state space for
position and momentum, which is depicted schematically
in Fig. 1. In order to prove that the finite state space is physi-
cally consistent, we must show that the commutator [x̂ , p̂] in
this space is physically indistinguishable from the improper
commutation relation [x̂ , p̂] = i~. To this end, we note that
x̂ =

∑
+D
m=−D xm |xm〉〈xm | and p̂ =

∑
+D
j=−D p j |p j 〉〈p j |. Using

these expressions, we find that the commutator [x̂ , p̂] has the
following matrix elements:

〈xm |[x̂ , p̂]|xn〉 =
2π~(m − n)

(2D+ 1)2

+D∑
j=−D

j e i2π(m−n) j/(2D+1),

(57a)

〈p j |[x̂ , p̂]|pk〉 =
2π~(k − j )

(2D+ 1)2

+D∑
m=−D

me−i2π( j−k)m/(2D+1).

(57b)
We notice that the diagonal elements 〈xm |[x̂ , p̂]|xm〉 and
〈p j |[x̂ , p̂]|p j 〉 are all zero. As a result, the trace of [x̂ , p̂] is
zero, as expected for any commutator of finite-dimensional
operators. We evaluate the above Eq. (57) in the limit D→∞
using Mathematica [49], and simplify to obtain

[x̂ , p̂] = lim
D→∞

i~
[

1− (2D+ 1)
∣∣x(

D+ 1
2

)〉〈x(
D+ 1

2

)∣∣] ,
(58a)

= lim
D→∞

i~
[

1− (2D+ 1)
∣∣p(

D+ 1
2

)〉〈p(
D+ 1

2

)∣∣] . (58b)

We find that when the expectation value of [x̂ , p̂] is evaluated
for any physical state, the contributions from the second term
in the above expressions asymptotically vanish. In this limit,
we recover the usual commutator [x̂ , p̂] = i~ for infinite-
dimensional operators. Thus, we have constructed a consistent
finite-dimensional state space for position and momentum.

2. Derivation of the Expression for P∞

We write the state ρ from Eq. (45) in the position basis of the
finite-dimensional state space as

ρ = lim
D1x→∞

lim
1x→0

+D∑
m=−D

+D∑
n=−D

Ḡ xm xn |xm〉〈xn|. (59)

Similarly,ρ can be written in the momentum basis as

ρ = lim
D1p→∞

lim
1p→0

+D∑
j=−D

+D∑
k=−D

0̄p j pk |p j 〉〈pk |. (60)

As ρ is normalized, we have
∑
+D
m=−D Ḡ xm xm =∑

+D
j=−D 0̄p j ,p j = 1. We can compute P∞ for ρ by first com-

puting P2D+1 in terms of Ḡ xm xn and 0̄p j pk , and then evaluating
its limiting value as D→∞ and pmax→∞, subject to the
constraint D/pmax→∞. These limits together ensure that
1x→ 0 and1p→ 0, such that D1x→∞ and D1p→∞.
Thus, we can compute P∞ in terms of Ḡ xm xn as

P∞ = lim
D1x→∞

lim
1x→0

√√√√2D+ 1

2D

[∑
m,n

|Ḡ xm xn |
2 −

1

2D+ 1

]
.

(61)

Similarly, in terms of 0̄p j pk , we have

P∞ = lim
D1p→∞

lim
1p→0

√√√√√2D+ 1

2D

∑
j ,k

|0̄p j pk |
2 −

1

2D+ 1

.

(62)

In order to derive the form of P∞ in terms of G(x , x ′)
and 0(p, p ′), we must obtain the relation of these con-
tinuous functions to their discrete counterparts Ḡ xm xn

and 0̄p j pk , respectively. Now if ρ is a physical state, then
G(x , x ′) and 0(p, p ′) must be continuous integrable func-
tions normalizable to unity. Thus, the relation of G(x , x ′)
to Ḡ xm xm , and that of 0(p, p ′) to 0̄p j pk , must be such

that
∑
+D
m=−D Ḡ xm xm =

∑
+D
j=−D 0̄p j ,p j = 1 should imply∫

+∞

−∞
G(x , x )dx =

∫
+∞

−∞
0(p, p)dp = 1. We now consider

the relations

G(xm, xn)= lim
D1x→∞

lim
1x→0

Ḡ xm xn/1x , (63a)

0(p j , pk)= lim
D1p→∞

lim
1p→0

0̄p j pk/1p . (63b)

Substituting the above relations into
∑
+D
m=−D Ḡ xm xm =∑

+D
j=−D 0̄p j ,p j = 1 yields limD1x→∞ lim1x→0 G(xm, xm)1x

and limD1p→∞ lim1p→0 0(p j , p j )1p = 1. These summa-
tions are equivalent to the integral relations

∫
+∞

−∞
G(x , x )dx =∫

+∞

−∞
0(p, p)dp = 1, which implies that Eq. (63) is correct.

Upon substituting Eq. (63a) into Eq. (61), and Eq. (63b) into
Eq. (62) and simplifying, we obtain

P∞ = lim
D1x→∞

lim
1x→0

√√√√ +D∑
m,n=−D

|G(m1x , n1x )|21x1x ,

P∞ = lim
D1p→∞

lim
1p→0

√√√√ +D∑
j ,k=−D

|0( j1p, k1p)|21p1p .

The above equations can be expressed in integral form as [50]

P∞ =

√∫∫
+∞

−∞

|G(x , x ′)|2dxdx ′ =
√

Tr(ρ2), (64a)

P∞ =

√∫∫
+∞

−∞

|0(p, p ′)|2dpdp ′ =
√

Tr(ρ2). (64b)

Moreover, in terms of the Wigner function representation
W(x , p)= (1/(π~))

∫
+∞

−∞
〈x + y |ρ̂|x − y 〉e−2i py/~dy of ρ

[51], the measure P∞ can be expressed as

P∞ =
√

Tr(ρ2)=

√
2π~

∫∫
+∞

−∞

W2(x , p)dxdp . (65)
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We note that the form of P∞ in Eq. (64a) is identical to a
measure known as the “overall degree of coherence” that was
introduced and employed by Bastiaans for characterizing the
spatial coherence of partially coherent fields in a complete
manner [52,53]. Here, we have derived the measure for general
classical and quantum states in the position and momentum
representations from an entirely distinct perspective.

6. CONCLUSION AND DISCUSSION

In the context of 2D partially polarized electromagnetic fields,
the basis-independent degree of polarization P2 can be used
to quantify the intrinsic degree of coherence of 2D states. The
measure P2 has six known interpretations: (i) it is the Frobenius
distance between the state and the identity matrix, (ii) it is
the norm of the Bloch vector representing the state, (iii) it is
the distance to the center of mass in a configuration of point
masses, (iv) it is the maximum of the degree of coherence, (v) it
is the visibility in a polarization interference experiment, and
(vi) it is equal to the weightage of the pure part of the state. By
generalizing the first three interpretations, past studies derived
analogous expressions for the intrinsic degree of coherence
PN of ND states. In this paper, we extended the concepts of
visibility, degree of coherence, and weightage of the pure part to
ND states, and showed that P2 generalizes to PN with respect to
these interpretations as well. While other yet-to-be-discovered
interpretations may still exist, we showed that PN has all the
known interpretations of P2 and can therefore be regarded as the
intrinsic degree of coherence of ND states. Finally, we extended
the formulation of PN to the N→∞ limit and quantified the
intrinsic degree of coherence P∞ of infinite-dimensional states
in the OAM, photon number, and position and momentum
representations.
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